1 はじめに

先日テレビ番組で、「10 人のジャンケンはなかなか終わらない」という 話を耳にした。 実際に $n$ 人のジャンケンが平均何回位で終わるか、 すなわち $n$ 人から始めて 1 人だけの勝者が決まるまでに 行わなければいけないジャンケンの回数の期待値 $M_n$ に関する考察は、 ネットで検索するとかなり出てくるし (例えば [1], [2], [3], [4], [5]), その漸近オーダーが $O((2/3)^n)$ であることも知られているらしい ([6])。

これらの多くは平均回数に関する漸化式を使って考察しているが、 私が確率論に関しては素人なせいか、 確率論らしい確率空間や確率変数などの定式化は省かれていて、 漸化式が成り立つことの説明もなんとなく行われているものが多い ように感じる。

本稿では、そのあたりを多少明確にした話をしたいと思うが、 もしかしたらこの問題のちゃんとした定式化については、 「確率過程」などの理論で説明すべき話なのかもしれないが、 それについては私も不勉強なので、 基本的な確率論の中で考える。

竹野茂治@新潟工科大学
2025-09-08